Calculating Bucket Elevator Capacity

For engineering purposes, it is recommended to use water level capacity as the basis for calculation. Actual bucket fill will vary depending on the product and operational conditions.

STEP 1: Multiply the CAPACITY of the bucket times the NUMBER OF BUCKETS per foot (12 divided by spacing) times the NUMBER OF ROWS of buckets. This will give the capacity in cubic inches of each running foot of the belt or chain.
STEP 2: Multiply the answer times the SPEED of the belt or chain in FPM for the capacity discharged per minute.

For FEET Per Minute

π		head pulley diameter (in.)		RPM		in. / feet	feet / min.
3.1416	x		x		\div	12	

STEP 3: Then multiply by 60 minutes to get cubic inches per hour.
CONVERT CUBIC INCHES PER HOUR AS FOLLOWS:
BUSHELS:
Divide by 2,150 to convert to bushels.
CUBIC FEET:
Divide by 1,728 to convert to cubic feet.
SHORT TONS:
Multiply cubic feet capacity times weight of product per cubic foot and divide by 2,000 .
METRIC TONS: Multiply cubic feet capacity times weight of product per cubic foot and divide by $2,204.62$.

For BUSHELS Per Hour

cu.in. / hour cu. in. / bushel BPH
\qquad
For CUBIC FEET Per Hour

> cu.in. / hour cu. in. / cu. ft. cu. ft. / hour
\qquad
For SHORT TONS Per Hour ${ }^{* *}$ First determine cubic tthr. at water level using above formula then proceed as follows \qquad
cu.ft./ hr.
weight of product /
lbs. / hour
lbs. / ton
tons / hr.
\qquad
cu. ft.
$x=-\frac{2,000}{=}=$
For METRIC TONS Per Hour
** First detemine cubic thr. at water level using above formula then proceed as follows \qquad
cu.ft./ hr.
weight of product /
cu. ft.
lbs. / hour
bs./
metric tons / hr.
\qquad x $=$ \qquad
metric ton
\qquad

CALCULATING HORSEPOWER

$H P($ at head Shaft $)=\frac{W \times H}{33,000}$
$W=\frac{\text { lbs. / hour }}{60 \text { minutes }} \quad H=$ Vertical Lift In Feet
The above formula will result in the theoretical horsepower necessary. It is recommended that an additional 25% minimum be added for drive losses and up to 15% for elevator friction and cup digging through the boot.

